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Abstract-The turbulent natural-convection boundary layer for air along a heated vertical plate is inves- 
tigated numerically with an algebraic (ASM) and fully differential Reynolds-stress model (RSM). From 
the literature a set of model constants is selected, in such a way that the wall-heat transfer and mean-flow 
structure are predicted in close agreement with the experimental data. Sensitivity tests on RSM constants 
show which constants dominate the mean-flow prediction, and which constants only affect turbulence 
quantities. Wall modifications are employed to improve predictions of the near-wall turbulence. RSM 
calculations of the turbulence quantities agree well with available experimental data. ASM results are 
poorer, but still in qualitative agreement with experiments. Hence, in natural-convection boundary layers, 
the local-equilibrium assumption has only limited applicability. Furthermore, the eddy-viscosity concept 
used in the k-e model (KEM) is tested. The KEM gives good mean-flow results, but for a good prediction 

of the detailed turbulence structure the RSM is needed. 

1. INTRODUCTION 

TO SOLVE turbulent flow problems in complex geome- 
tries, the Reynolds-stress model is often needed in 
cases where the well-known k-E model (KEM) fails 
to give accurate results. To obtain a generally appli- 
cable turbulence model the Reynolds-stress model has 
to be tested for simple geometries as well : the present 
paper gives Reynolds-stress calculations for the tur- 
bulent natural-convection boundary layer for air 
along a heated vertical plate. 

For this geometry, it is not expected that the Rey- 
nolds-stress model will yield a significantly better pre- 
diction of the mean-flow characteristics than existing 
k-8 models. Henkes and Hoogendoom (11 found sev- 
eral low-Reynolds-number k-8 models to perform 
very well. In particular, the models of Jones and Laun- 
der [2], Chien [3] and Lam and Bremhorst [4] predict 
the wall-heat transfer within experimental uncer- 
tainty. For the present flow geometry, the Reynolds- 
stress model can provide a better understanding of 
near-wall turbulence and it can show whether KEM 
assumptions hold. 

In the literature on Reynolds-stress modeling there 
is still no agreement on the right wall modifications 
and incorporation of anisotropy. The selected model 
closely resembles the model recommended by To and 
Humphrey [5], who used an algebraic stress model 
(ASM) for the natural-convection boundary layer. 
Shortcomings of their model were the omission of an 
important term in the E equation (see ref. [l]) and 
the assumption of local equilibrium for the Reynolds 
stresses. We carried out calculations with an ASM 
and a fully differential stress model (RSM), which 

clearly show that the local-equilibrium assumption 
is not valid for this type of flow. To obtain better 
predictions of the near-wall region, modification 
functions are derived and incorporated in the RSM 
equations. 

The influence of model constants on the RSM 
results is tested by a sensitivity analysis. ASM and 
RSM calculations are compared with experimental 
data of Miyamoto et al. [6] and Tsuji and Nagano [7- 
9]. This comparison shows that the fully differential 
RSM is superior to the ASM for this type of flow. 

The KEM uses the eddy-viscosity concept to model 
the Reynolds stress and the turbulent heat fluxes. This 
concept describes turbulence as a diffusion process, 
with the aid of a local isotropic turbulent viscosity. A 
strict analogy between Reynolds stresses and tur- 
bulent heat fluxes is assumed, as expressed by 
the turbulent Prandtl number ug, which is a constant 
in the KEM. The eddy-viscosity concept gives iso- 
tropic turbulent intensities, i.e. p = Sk, i = 1, 2, 3. 
Furthermore, the turbulent flux vector -u@’ for a 
quantity 4 is assumed to have the same direction as the 
mean-gradient vector of 4. Thus, the eddy-viscosity 
concept cannot distinguish between anisotropy and 
inhomogeneity of the turbulence. Our calculations 
will show that some of the assumptions in the eddy- 
viscosity concept do not hold in the natural-con- 
vection boundary layer. 

2. REYNOLDS-STRESS MODELING 

2.1. Reynolds-stress equation 

The partial differential equations describing trans- 
port of Reynolds stresses a can be derived from the 
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5 specific heat at constant pressure 
[J kg- ’ K- ‘1 

9 gravitational acceleration ( = 9.8 1 m s- “) 

Gr, local Grashof number, g/?AOx3/v2 
k turbulent kinetic energy [J kg- ‘1 

NUX local Nusselt number, x/AO(&B/~Y), 
Pr Prandtl number, pvc,/i 
Re Reynolds number, x,,~u,,~/v,~~ 

NOMENCLATURE 

u, u, w velocity components [m s- ‘1 

ub laminar buoyant velocity scale, 
J(g/?AOx) [m s- ‘1 I 

4 friction velocity, J(r,/p) [m s- ‘1 
X coordinate along plate [m] 

Y coordinate perpendicular to plate [m] 

Y+ dimensionless transverse coordinate, 

Y%lV. 

Greek symbols 

;* 

thermal diffusivity, I/&,) [m2 s- ‘1 
coefficient of volumetric thermal 
expansion [K- ‘1 

A0 temperature difference, 0, - 0, [K] 
& viscous dissipation rate of turbulent 

kinetic energy [m’ s- ‘1 

thermal dissipation rate of temperature 
fluctuations [K2 s- ‘1 
dimensionless similarity coordinate, 

(Y/x) NW, 
temperature [K] 
friction temperature, -a/uT(X3/8y), [K] 
thermal conductivity [W m- ’ K- ‘1 
kinematic viscosity [m’ s- ‘1 
density [kg m- ‘1 
turbulent Prandtl number for quantity 4 
wall shear stress [N m-‘1 
mechanical turbulence time scale, k/c [s] 
thermal turbulence time scale, :8’2/so [s]. 

Superscripts 
fluctuating part of quantity 4 
time-mean part of quantity 4, 

Subscripts 
i, j, k Cartesian coordinate directions 
max maximum value of quantity 
t turbulent quantity 
W wall condition 
cc ambient condition. 

Navier-Stokes equations. For a stationary incom- 
pressible buoyant flow under the Boussinesq approxi- 
mation one obtains : 

add 
‘k ax, 

a = dij + P, + G, + Q, - ci, (1) 

where 
_ _ 

d, = &(,,F -&?&p~,-p~fj,) 
k k P P 

p,i= _ 

G, = - /?(u,%‘g, + u;O’gJ 

I 

@& ~+(?uI . ( ‘> au,: au; 

p ax, ax, 2 
Ei,=2v----. ax, ax, 

The terms on the right-hand side of equation (1) rep- 
resent laminar and turbulent diffusion dij, mean-shear 
production Pfi, buoyant production Gii, pressure- 
strain correlation mD, and viscous dissipation rate E(,. 
In our second-moment closure, the production/ 
destruction terms P, and G, are known exactly. All 
other second- and higher-order correlations have to 
be modeled. 

A complicated and important term in equation (1) 
is the pressure-strain correlation Q,. Since aii = 0, it 
does not appear in the transport equation for the 
turbulent kinetic energy k. Hence, mii redistributes 

turbulent energy between the normal stresses, leaving 
k unchanged. Its influence on the Reynolds-shear 
stress is less evident. Theoretical analyses on the 
modeling of Qi, usually start with the approach given 
by Chou [lo]. Chou used a Poisson equation for the 
pressure fluctuations to obtain an integral expression 
for @,j, in which four different contributions can be 
distinguished : turbulence-turbulence interactions 
@,‘), turbulence-mean flow interactions @cl, buoy- 
ancy effects @h3) and a surface integral. The latter can 
be neglected far enough from fixed walls, whereas the 
other three contributions are modeled separately. 

For the turbulent part, Rotta [l l] proposed a simple 
linear model, assuming a ‘return to isotropy’ pro- 
portional to the rate of anisotropy : 

@I) = -C, 2 (m-_:k&). 
1, k 1 I V 

Experiments of Uberoi [ 121 and Tucker and Reynolds 
[ 131 on the decay of grid turbulence suggest a C,- 
value of about 2.5-3.0. Lumley [14] pointed out that 
C, is not a universal constant, but depends on the 
turbulence Reynolds number and the rate of 
anisotropy. This possibly explains the large dis- 
crepancies in the literature on the correct value for 
C, : Launder et al. [ 151 used C, = 1.5, whereas Gibson 
and Younis [16] took C, = 3.0. For buoyant flows 
often C , z 2.2 is used. 

The mean-strain part or rapid-distortion part Qr’ 
can be written as : 
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where A,, is a fourth-rank tensor. According to 
Rotta [ll], A,,,,, should satisfy the symmetry and 
traceless properties of mij, and furthermore A,, = 
2u(uL under contraction of indices. Analogous to 
equation (2) Rotta proposed a simple model for the 
mean-strain part : 

(2) 2 
mij = -c*(Pij-JPksij). (4) 

This model enforces an isotropization of the pro- 
duction tensor P,. Rotta chose CZ = 0.6, adopted by 
many workers. Gibson and Younis [16], however, 
took C2 = 0.3, whereas Hossain and Rodi [17] used 
C2 = 0.55 for buoyant flows. 

The buoyant part @I:’ is difficult to study separ- 
ately from the other pressure-strain contributions. 
For lack of sufficient experimental data, one usually 
models the buoyant part analogously to equation (4) : 

@I;” = -C3(GiJ-;Gkaij). (5) 

According to Launder [18], C3 = 0.33 is an exact 
value in the case of isotropic turbulence. Gibson and 
Launder [19] took C3 = 0.5 for the horizontal atmo- 
spheric boundary layer, Ljuboja and Rodi [20] used 
C, = 0.6 for horizontal and vertical natural-con- 
vection wall jets. To and Humphrey [5] used 
C3 = 0.55 for the vertical natural-convection bound- 
ary layer, thus following Hossain and Rodi [17] and 
Gibson and Launder [21]. In general it seems best to 
take C3 equal to C1. 

Although the three pressure-strain contributions 
are modeled separately, they will act simultaneously 
in most practical applications. Therefore the merits of 
the various modeling proposals should be judged from 
their performance in well-defined test cases. Gibson 
et al. [22] compared the performance of various sets 
of model constants reported in the literature. They 
found that the Quasi-Isotropic Model of Launder et 
al. [15] in combination with equations (2) and (5) is 
superior to the simple Rotta model (4), especially in 
non-equilibrium flows with strong anisotropy. For 
most practical applications, however, the simple 
Rotta model will give sufficient accuracy. 

The diffusion term d, can be split into molecular 
diffusion (which is known exactly), turbulent diffusion 
involving a triple correlation, and pressure diffusion. 
Here, pressure diffusion is neglected, leaving only the 
triple correlation u&$; to be modeled. For U&U; a 
transport equation can be derived analogous to the 
Reynolds-stress equation (l), containing many new 
higher-order correlations which are difficult to model. 
Hanjalic and Launder [23] simplified the u$$; equa- 
tion by dropping all transport terms and mean-flow 
contributions. Daly and Harlow [24] truncated that 
model as : 

k II au,hJ! 
- u,%4;u; = c, 2 up, __ 

ax, 
(6) 

where C, = 0.20 [25], 0.22 [26] or 0.25 [15]. Although 
equation (6) is not invariant under coordinate 
rotation, it might still be an adequate model, if we 
assume that pressure diffusion is implicitly incor- 
porated as well. The Daly and Harlow model can be 
generalized to the so-called gradient-diffusion model : 

I I 
k-_d@ 

-uic#J = Cql,UkTg 

Viscous dissipation of turbulence occurs at the 
smallest length scales, where turbulence is considered 
to be almost isotropic. This leads to an isotropic model 
for &ij : 

Eij = f&Sij. (8) 

Lumley [14] stated that sij can also contain off-diag- 
onal terms, but these can be thought to be incor- 
porated implicitly in the pressure-strain model. To 
close the Reynolds-stress model at this stage, we need 
additional equations for k, E and u(&. The k equation 
follows directly from equation (1) under contraction 
of indices. For E an exact transport equation can be 
derived, to be modeled with a second-moment closure. 
Following Tennekes and Lumley [27] we obtain : 

+C.,(pk+C,&k); -cc,;. (9) 

The values of the model constants Cc,, C62, C,, are 
taken from the low-Reynolds-number k-c model of 
Chien [3], whereas C, appears as a result of equation 
(7). One usually takes C, such that C,/C, = ok/e,, 
where ak and cr, are turbulent Prandtl numbers for k 
and E in the k-c model. Launder [25] recommended 
C, = 0.20 and C, = 0.15, in accordance with ak = 
1.0, o, = 1.3. Hossain and Rodi [17] and To and 
Humphrey [5], however, took C, = 0.24, which is 
not supported by experimental evidence. 

2.2. Modeling the turbulent heatjlux equation 
The transport equation for the turbulent heat flux 

u$’ can be derived analogously to the Reynolds-stress 
equation (1) : 

u au,w 
-= di,+PI~‘+P~~‘+Gis+~,,-EiB (lo) * ax, 

where 
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The terms on the right-hand side of equation (10) bear 
a close resemblance to the terms in equation (1). An 
important difference, however, is that U@ is generated 
by both the mean-velocity gradient and the mean- 
temperature gradient. As a consequence of the Bous- 
sinesq approximation, buoyancy effects involve the 
temperature variance 0”. for which an additional 
relationship is needed. 

For @,H an integral expression can be obtained simi- 
lar to the pressure-strain correlation, in which again 
four contributions can be distinguished: @,“, @$‘, 
(hj$, and a surface integral which is neglected far 
enough from fixed walls. For the turbulent part, 
Monin [ZS] proposed : 

(11) 

followed by many workers. For Cls a value of about 
3.0 is often used. Gibson and Launder [21] took 
C,@ = 3.2, but Wyngaard [29] used C,@ = 4.8. From 
the non-equilibrium data of Tavoularis and Corrsin 
]30], Cl0 = 3.7 can be derived. 

The mean-field part is usually modeled with the 
destruction-of-production hypothesis : 

@$’ = -C&J’ (13 

with Czti = 0.5 according to most workers. 
For the buoyant part one often uses, in analogy 

with equation (12) : 

(bj;’ = Cjsgifiir;ii = -C3@Gw. (13) 

Launder [31] stated that CXu = 0.33 is the correct 
value in the limit of vanishing anisotropy, but for 
most applications CjO = Czi) = 0.5 will be a better 
choice. 

In modeling the diffusion term die, most authors 
neglected the pressure diffusion part, whereas others 
treated this term in combination with QjO. Here, we 
will neglect the pressure diffusion part. To obtain a 
simple expression for the molecular part, some terms 
have to be rewritten : 

this choice will only alfect the viscous near-wall region 
of the flow. The last term which remains to be modeled 
is the triple correlation term u~uJII’, representing 
turbulent diffusion, Wyngaard and Cot& [32] used the 
generalized gradient-diffusion model (7) to find : 

(f-3 

with C, = 0.15 1337 or C, = 0.20 [25]. 
The viscous dissipation rate tiH is the last term in --_ 

the u,%’ equation (10). At high turbulence Reynolds 
numbers, the small-scale turbulence is believed to be 
almost isotropic. A reversion of coordinate directions 
gives x$ = -xy, u,$ = tr, and O* = 0. Assuming that 
Et6 = a, we find sjH = -a after reversion of coordi- 
nates. This is compatible only if E, = 0. For this 
reason we will neglect sit) altogether. 

2.3. Modeling the temperature variance equation 
For p a differential equation similar to the k equa- 

tion can be derived : 

with 

(16) 

--_ 

In this equation one can distinguish a diffusion term 
d,, a mean-flow production term Pe and a thermal 
dissipation term so. The onfy correlations to be 
modeled are QX and sO. 

For the triple correlation, Samaraweera [34] used 
equation (7) where we will take C,, = 0.22 as an 
appropriate model constant. 

For sg a transport equation can be derived. Jones 
and Musonge 1351 started from the exact differential 
equation for E”, which they modeled similarly to the E 
equation in the standard KEM, the main difference 
being the use of two time scales instead of one : 

The first term on the right-hand side of equation (14) 
is recognized as the desired molecular diffusion term, 
with v as a diffusion coethcient. The second term on 
the ~ght-hand side of equation (14) can be modeled 
with equation (7), yielding a third-order derivative in 
0, which is usually neglected. The last term in equa- 
tion (14) can be modeled together with eiB. The above 
derivation, however, is not unique. In a similar way 
one can obtain a decomposition with CI as a leading 
diffusion coefficient. Since it is not possible to decide 
a priori which choice will be best, we used the mean 
(a + v)/2 as a diffusion coefficient. It is expected that 

+ (17) 

In modeling the turbulent diffusion term Z&E&, the 
generalized gradient-diffusion model (7) is applied 
with C, = 0.22, in accordance with Jones and 
Musonge [36]. For the model constants C,, , Cp2, CD, 

and CDz, the set given by Nagano and Kim [37] is 
used: C,, = 1.8, CPz = 0.72, CD, = 2.2, CD, = 0.8. 

Y-i In modeling the equations for u,B and 8”, the 
mechanical turbulence time scale 7, = k/r: has been 
used. Launder and Samaraweera [38] also considered 
the application of a thermal time scale tt) = @‘2/ss. 
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This leads to an overall time scale r = J(r,,,r& but 
since r0 is difficult to measure, most workers assume a 
linear relationship between both time scales, implying 
only one independent time scale. The ratio R = T&,, 
is usually assumed to lie between 0.5 and 1.0, but 
Jones and Musonge [35] used R = 0.35. Experiments 
have indicated that R is not a universal constant, but 
depends on the flow type. Beguier et al. [39] and 
Nagano and Hishida [40] observed R TZ 0.40.5 for 
the natural-convection boundary layer. With this 
simplification, we can put 

E* = &qk. 

If we assume that p has only a small effect on the 
turbulent heat fluxes, we can assume local equilibrium 
Ps = eO, yielding : 

This closes the set of Reynolds-stress equations. 

(18) 

3. BOUNDARY LAYER EQUATIONS 

3.1. Wall proximity and low-Reynolh-number effects 
Close to the wall the turbulence structure is strongly 

influenced by wall damping and pressure reflections, 
as shown in Table 1. The near-wall anisotropy 
increases. energy is transferred from u” to z, L 
whereas w’* remains virtually unaffected ; the shear 

-i-i. stress u v is diminished. Most pressure-strain models 
fail to give a proper description of these effects as a 
result of the neglect of the surface term in the integral 
expression for Oij. 

Shir [42] proposed a relatively simple wall model by 
adding a correction term to (I$‘). Gibson and Launder 
[19] extended the Shir model to the mean-strain part 
and the buoyant part : 

@ij,w = C,, E (u;u;n,n,&, -&iu;n,n, 

-$uiu&nj)fw(l/y) + C2,(@~f’nkn&j -$#&&nj 

- @$‘nkni)fw(l/y) + C3,(@~?nkn,h,j - @$‘nknj 

--~~3m)f,(h4 (19 

where n = (n,, n2, ns) is the unit vector normal to the 
wall and y is the coordinate normal to the wall. A - 
shortcoming of this model is that p and w” are 
treated equally, which is not in agreement with exper- 
iments. Gibson and Launder [19] used C,, = 0.5 and 
Czw = 0.3, whereas To and Humphrey [5] applied 

Table 1. Comparison of experimental data on free-shear and 
near-wall flows 

Free shear [41] 0.94 0.49 0.57 0.34 
Near-wall flows [22] 1.19 0.25 0.56 0.24 

C,, = 0.6 and Czw = 0.3. All authors took C,, = 0 
for lack of adequate experimental data. Launder et al. 
[ 151 suggested a different wall model in combination 
with their Quasi-Isotropic Model for (0,. 

For the turbulent heat fluxes observations similar 
to the Reynolds stresses can be made. According to 
Gibson and Launder [ 191, we have : 

For the present geometry, these wall modifications 
only affect the ~‘0’ equation. Most investigators took 
C ,& = 0.5, C2& = C,& = 0. 

In equations (19) and (20) fw is a function decreas- 
ing with wall distance y. Gibson and Launder [19] 
took 1 to be the characteristic turbulence length scale 
k312/e, yielding 

For a forced-convection boundary layer fw will be a 
monotonically decreasing function. It is not a priori 
clear whether the decrease in f, also occurs for the 
natural-convection boundary layer. The value of the 
model constant c, can be estimated from the wall 
functions for forced-convection flows : c, = K/C:~~ x 
2.5 achieves fw = 1 at the wall (K x 0.42 Von Karman 
constant). Ljuboja and Rodi [20] used a higher value 
c, = 3.72 for buoyant flows. To and Humphrey [5] 
took c, = 2.53 in their ASM calculations of the ver- 
tical natural-convection boundary layer. 

In the highly anisotropic wall layer with the low 
turbulence levels, the assumption of small-scale iso- 
tropy for the viscous dissipation rate sij is not valid. 
A correction term for ai, was suggested by Hanjalic 
and Launder [43] 

Eij = $& 
( 

(1 -f;)S, +jfY 7 
-1 

(22) 

with fs = (l+Re,/lO)-’ and Re, = k2/(&v). In the 
outer region of the boundary layer fs will be negligibly 
small. 

Additional modifications are required to enforce a 
correct near-wall behavior of turbulence quantities. 
This is supported by a Taylor-series expansion for the 
basic fluctuating quantities in the vicinity of the wall, 
yielding U’ N y, u’ N y2, w’ N y and 0’ N y. Chien [3] 
and Nagano and Kim [37] used these results to derive 
Taylor-series expansions for the turbulence quantities 
k, E, fY2 and Ed. It follows that k and @r both behave 
as y* close to the wall, but E and Ed both remain finite 
at the wall. For numerical convenience, however, E 
and .sg are assumed to be isotropic, with E = E@ = 0 
as wall boundary conditions. This necessitates the 
inclusion of the wall modification functions D and D,, 
in the k and tY2 equations, which follows from an 
order-of-magnitude analysis for small y. Close to the 
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wall all terms in the k and 6” equations vanish, except description of the solved RSM equations is presented 
the molecular diffusion terms. Therefore, Jones and in Table 2, where 
Launder [2] and Nagano and Kim [37] used correction 
terms of first-order accuracy in Y. Chien [3] applied a 
somewhat simpler form for D with only zero order 

pk = _,$-!! 
aY ’ 

G, = gpu’Q’, 

accuracy, but which proves to be sufficient for most 
computations. Therefore we will take p, = _mg, C,, = 1, F, = 1, 

i 
D = -2~;; DO = -2~;~. (23) F, = l-0.3 exp (- Re:/36) 

To obtain wall-modification functions for the 
Reynolds-stress quantities, the dissipation cij is 
approximated’with a Taylor-series expansion around 
y = 0. Here, the anisotropy of the flow becomes 
apparent, since E, , and &33 remain finite at the wall, 
but cZ2 -y’and~,~ - y (see Launder and Reynolds 
[44]). From an order-of-magnitude analysis for the 
Reynolds-stress equations withy approaching zero, it 
is evident that wall modification functions D, ,, D,, 
and D, 2 are required. Strictly speaking, a D,, function 
is not needed, since other terms in the v” equation 
ensure balance. Using a zero-order model equivalent 
to (23) yields 

p 2 

D,, = -2~~; D,, = -+ 

,z - I I 
D,, = -2,:; DIz = -4+ (24) 

These formulae are used in the PDEs for the Reynolds 
stresses. To achieve consistency with the k equation, 
we have put Dz2 = -2v~‘~/y~so that D, = 20. 

For the turbulent heat fluxes the same argu- 
mentation is applied. For high Re, the dissipation ,siO 
was modeled as zero. Close to the wall, however, the 
molecular diffusion terms have to be balanced by wall- 
modification functions. In accordance with Taylor- 
series expansions for the fluctuations, we find 

Dls = --(~+a)~; 
I I 

Dz8 = -2(v+or)$. (25) 

This completes the derivation of appropriate wall- 
modification functions. In the E equation, additional 
low-Reynolds-number functions F,, F2 and E given 
by Chien [3] are included. Detailed information on 
low-Reynolds-number k-e modeling is given by Pate1 
et al. [45] and Henkes and Hoogendoorn [I]. For the 
Ed equation similar functions might be adequate, as 
was put forward by Nagano and Kim [37], but theor- 
etical and experimental investigations are not yet 
available to determine suitable forms, so we will 
refrain from using them. 

3.2. Modeled equations 
3.2.1. Fully differential Reynolds-stress model. With 

the modeling approximations treated above, the par- 
tial differential equations in the RSM are simplified 
by a boundary-layer approximation. A complete 

and where we have omitted the convection and 
diffusion terms : 

The set is closed with the continuity equation (serving 
as the V equation) and the boundary-layer equations 
for U and 0 

au av 
z+-‘0 ay 

ug+v~=aa20 adof. 
ay ay2 ay 

(28) 

In our RSM, we have adopted the following 
models. For turbulent diffusion and pressure 
diffusion, the generalized gradient-diffusion hypoth- 
esis is used, since it is relatively simple and still accur- 
ate enough to capture most turbulent transport pro- 
cesses. More complicated models [23, 331 were 
implemented as well but gave no improvement of 
results. For the pressure-strain correlation we used 
the simple Rotta model. In the turbulent heat-flux 
equations the simple model of Monin [28] was used. 
In the E@ equation the model of Jones and Musonge 
[35] was used, in combination with the set of constants 
given by Nagano and Kim [37]. Wall modifications 
were modeled according to Gibson and Launder [ 191. 
Furthermore, we added several low-Reynolds-num- 
ber functions as described in the previous section. 

3.2.2. Algebraic Reynolds-stress model. The PDEs 
for the Reynolds stresses, turbulent heat fluxes and 
temperature variance can be simplified to algebraic 
equations under the assumption of local equilibrium, 
thus dropping all transport terms. This approach may 
be justified for several types of free flow, but it is 
not realistic in the proximity of a solid wall. This is 
supported by the results of To and Humphrey [5], 
who showed that diffusion and convection terms in 
the k equation do not cancel close to the wall. As an 
improvement we applied the model of Rodi [46], who 
assumed a close analogy between transport of Reyn- 
olds stresses and transport of turbulent kinetic 
energy : 
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w 

I I 

0’ + 
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domain is depicted together with boundary con- 
ditions. 

=+‘A+Gx-c) (29) 

where dk = id,, represents diffusion of k. This approxi- 

mation seems particularly useful for the normal 
stresses, but is not a priori correct for the shear 

stresses, as was argued by Hossain and Rodi [17]. 
Therefore we used equation (29) for the normal 

stresses only. Gibson and Launder [19] extended 
Rodi’s idea to the turbulent heat fluxes, but their 
formulation has not been widely tested and seems 
somewhat questionable from a theoretical point of 

view. 

At x = x,, an initial flow field is imposed. Two 
different options are used : a laminar and a turbulent 
starting profile. The laminar profile is calculated from 
the similarity solution of Ostrach [47]. In this case, 
the transition from laminar to turbulent flow has to be 
triggered by introducing a small amount of turbulent 
kinetic energy at a certain point in the flow, char- 
acterized by Gr, = Grt,. From experiments a Grlr- 
value of about 2 x 10’ seems to be reasonable. The k- 
level at the transition line is set equal to 

k/u; z 4 x lo-“, with ub = J(g/IAOx). The cor- 

responding a-profile is calculated from a local equi- 
librium assumption, yielding 

3.3. Boundary conditions 
In general, for each partial differential equation one 

boundary condition is required in the x-direction and 
two boundary conditions are needed in the y-direc- 
tion. No boundary conditions are specified at the 
downstream edge x = x,, since the PDEs are para- 
bolic in the x-direction. In Fig. 1 the computational 

Furthermore, prescribing non-homogeneous Dirich- 
let conditions at the outer edge for k and a enhances 
the transition. Characteristically, k and E are chosen 
such that Re, x 75 at the outer edge. 

The turbulent starting profile is applied at x = xb, 

x = I, 

u=v=o; 
0 = 0,; 

k=e=O; 

homogeneous Dirichlet 

conditions for 

RSM quantities 

x = xtr 

2 = Xb 

no boundary conditions required 
------- 

I 
,u=o; 
: no boundary condition for V; 

,O=O,; 
1 non-homogeneous Dirichlet 
I 
, conditions for k and E; 

I homogeneous Dir&let 

i or Neumann conditions 

I for RSM quantities 

------ J transition line 

I k and E prescribed 

------ -I 

U, V, 0 calculated 
from Ostrach’s solution 

FIG. 1. 

y=o 

Geometry, computational and boundary conditions 
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by using experimental correlations for the turbulent 
wall-heat transfer and by assuming the similarity 
relationships of George and Capp [48]. Our com- 
putations show that the numerical solution immedi- 
ately falls back to the laminar branch for Gr, < Gr,,. 
For larger Gr,, the solution finally becomes fully tur- 
bulent. Therefore, for smaller Gr, there seems to exist 
only a laminar solution, but for Gr, > Grtr instabilities 
can arise, which cause the transition from the laminar 
to the turbulent flow. In some cases the flow field 
remains laminar up to very large Gr,-values. Increas- 
ing the amount of introduced turbulent kinetic energy 
at the transition station and at the outer edge gives a 
quicker transition. 

In the asymptotic limit of large Gr, the boundary- 
layer structure turns out to be independent of the 
choice of boundary conditions for k and E and of the 
applied starting profile ; the exact nature and location 
of the transition process is considered to be of minor 
importance. 

4. NUMERICAL METHOD 

The partial differential equations in the KEM, ASM 
and RSM were discretized with a control-volume 
method. In general, the control-volume method is 
applied to elliptic flow problems. Here we used a 
modified version, which incorporates the parabolic 
character of boundary-layer flows. The present boun- 
dary-layer code was originally developed in ref. [l]. 
For this study, Reynolds-stress model equations were 
implemented. 

Rectangular grid cells are used to avoid cross 
derivatives in calculating the fluxes through the cell 
boundaries. A disadvantage is that the outer edge of 
the computational domain does not closely follow the 
boundary-layer edge for small x-values. Especially in 
the laminar part of the flow this leads to a considerable 
amount of ineffective grid cells. In the x-direction a 
uniform grid is used. In the y-direction a non-uniform 
grid is adopted, locating more grid cells close to the 
wall where gradients are steepest. This has two advan- 
tages : wall gradients are calculated more accurately, 
and more grid cells fall in the inner part of the bound- 
ary layer, thus reducing the number of ineffective grid 
cells. A tangens hyperbolicus formula is used to 
generate the y-grid. 

Having established a suitable computational grid, 
the various convection and diffusion terms were dis- 
cretized. In the boundary-layer approximation x- 
diffusion is neglected, leaving only x-convection to be 
discretized, which was done by a first-order upwind 
scheme. In the y-direction we adopted a hybrid 
scheme, which switches from central to upwind dis- 
cretization, depending on the local mesh P&let 
number. A numerical solution was obtained with a 
line-by-line Gau&Seidel iteration method, using the 
tridiagonal matrix algorithm. To aid numerical stab- 
ility, the grid was staggered in the y-direction for the 

V-velocity and all Reynolds-stress quantities. In the 
x-direction no staggering was required. 

Special attention has to be paid to the boundary 
conditions at the wall and at the outer edge. For the 
V-velocity, with grid points coinciding with the wall 
and the outer edge, no problems arise, since we can 
simply specify V = 0 at the wall. No boundary con- 
dition is required at the outer edge for the V equation, 
since it is of first order. For the Reynolds-stress quan- 
tities, the wall boundary conditions are treated anal- 
ogously to the V-velocity, since they are calculated on 
the same staggered y-grid. At the outer edge, we can 
specify either homogeneous Neumann boundary con- 
ditions or Dirichlet conditions. Since the grid points 
for U, 0, k and E do not coincide with the wall or the 
outer edge, virtual grid points are needed to discretize 
the boundary conditions. 

Iacovides and Launder [49], who solved ASM equa- 
tions for complicated flows, encountered several 
obstacles in obtaining a converged numerical solution. 
From their suggestions we adopted the ones relevant 
to our case. In short, we modified our solution method 
as follows : staggering of Reynolds stresses ; intro- 
duction of pseudo-viscosities ; modification of source 
terms in the k--E equations ; iterative solution method 
for algebraic Reynolds-stress equations. For further 
details, see ref. [49]. 

As a convergence criterion, we demanded that in 
all grid points all variables, non-dimensionalized such 
that their maximum absolute values are of order unity, 
should vary less than 10m4 between two successive 
iterations. A sharper criterion did not improve the 
results. To prevent the numerical solution process 
from oscillating or diverging, we used three methods : 
underrelaxation, false time steps and source-term 
manipulation (which treats positive source terms 
explicitly and negative source terms implicitly). The 
exact values of the relaxation parameters and false time 
steps are not given here, since they largely depend 
on the solution method, the grid structure and the 
boundary conditions. Quick convergence could be 
obtained with about 100 iterations per line in the fully 
turbulent part of the boundary layer. In the transition 
region more iterations were required. 

5. RESULTS AND DISCUSSION 

5.1. Literature review 
5.1.1. Experimental data. In the literature, not 

many experimental data exist on Reynolds-stress 
problems in the natural-convection boundary layer 
along a heated, vertical plate. Indeed, accurate 
measurements are difficult, due to the small thickness 
of the boundary layer and the limited accuracy of 
measuring instruments. The two most frequently used 
measuring techniques are hot-wire anemometry and 
laser-Doppler anemometry. The use of the hot-wire 
method has the disadvantage that the probe- 
although very small-forms an obstruction and dis- 
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torts the flow field. Tsuji and Nagano [7-91, however, 
claim that their recent hot-wire measurements are 
somewhat more accurate than existing laser-Doppler 

measurements. 
The case of a semi-infinite plate in an isothermal 

environment can never be simulated exactly in a real 
laboratory situation. The box used by Tsuji and 
Nagano was much larger than other configurations 

reported in the literature, thus reducing temperature 
stratification at the outer edge of the boundary layer. 
Their measurements were conducted in air for uni- 

form wall temperature, in contrast with Miyamoto et 
al. [6] who applied uniform wall-heat flux. Since the 
wall-heat transfer for large Gr, behaves almost anal- 

ogously for these two heating mechanisms, both 
experiments are used to verify the present calculations. 

Tsuji and Nagano non-dimensionalized their tur- 

bulence quantities with U, and 0, (suggesting an anal- 
ogy with the forced-convection boundary layer), 
whereas Miyamoto et al. used u,,, and A@. Here we 
will adopt the latter reference quantities. In general, 
the results of both investigations agree well for the 

outer part of the boundary layer. In the inner layer 
some differences appear. There, Miyamoto et al. 
observed z/z)‘, ~‘0’ < 0 whereas Tsuji and Nagano 
found u’v’, ~‘0’ z 0. Also the near-wall behavior of 
11” does not match. 

5.1.2. Numerical data. Most Reynolds-stress models 
have been tuned for free shear flows. Only few authors 
also included buoyancy effects and wall influences, 

since an accurate description of these phenomena 
requires the introduction of additional model func- 
tions and constants which are very difficult to extract 
from the available experimental data. 

The horizontal boundary layer was studied theo- 
retically by Launder [18] and Gibson and Launder 
[19, 211. The latter authors adopted the Shir-like wall 
modifications, whereas Launder [18] used the wall 
model of Launder et al. [ 151. Gibson and Leslie [50] 
investigated the vertical boundary layer with an ASM. 
They mentioned some important limitations of their 
analysis. The assumption of local equilibrium seems 
invalid in the turbulent natural-convection boundary 
layer, which implies that a differential RSM should 
be used. Furthermore, it seems doubtful whether 
fw =,f(l/y) is a correct wall modification function. 
Gibson and Leslie did not specify fi explicitly, but 
assumed that fi decreases monotonically from unity 
at the wall to zero in the outer layer. 

Recently, To and Humphrey [5] carried out ASM 
calculations for the vertical boundary layer. Although 
their results are the best available, they found only quali- 
tative agreement with measurements of Cheesewright 
and Ierokipiotis [51] and Miyamoto et al. [6]. Some 
of the differences are inherent to the ASM, but others 
stem from less complete modeling. Important for the 
whole turbulence structure is the calculation of the 
normal stresses. In genera1 the lateral normal stress 
1”’ is more important than the other two normal 
stresses, since in the boundary-layer approximation v’~ 

appears in the generalized gradient-diffusion model 
(7) and in the production terms for u’v’ and ~‘0’. 
In the natural-convection boundary layer, the local- 
equilibrium assumption leads to an overestimation of 
all normal stresses, since Pk + Gk > E in most parts of 
the flow. To and Humphrey did not use an algebraic 
u/* equation, but directly computed w’* = 
2&__U’*_L”Z . Hence, they computed too high levels 

for uf2 and v”, and a too low w’* level. An alter- 
native is to calculate all three normal stresses by alge- 
braic equations, and then scaling them in such a way 

that their sum equals 2k. In this way consistency is 

achieved without overpredicting u” and v’* 
strongly. A second, more sophisticated option is to 

model the transport of normal stresses according to 
Rodi [46]. In RSM calculations this problem is 
avoided, but due to small numerical errors it is still 
recommended to enforce consistency between the k- 
level and the normal stresses. 

5.2. Sensitivity analysis of RSM constants 
The influence of RSM constants on the computed 

mean-flow and turbulence structure cannot be derived 
easily from the set of RSM equations, since these are 

strongly coupled and non-linear. Therefore, a sen- 
sitivity analysis was carried out. The sensitivity par- 
ameter S($, /I) is defined as a dimensionless measure 
for the sensitivity of a quantity 4 to a change in model 

constant b, by taking S(+, /I) = (/I/~)(@/I?/I). For 
example, a value of S = 0.1 implies that a 1% increase 

in /I will yield a 0.1% increase in 4. 
We investigated NM, = -x/A@(B/ay), and all 

mean-flow and turbulence variables, of which we con- 
sidered the maximum values and their positions, all at 
Gr, = 10’ ’ where the flow has become fully turbulent. 
These quantities were non-dimensionahzed with x, 

u,,, and A@, allowing us to compare them with exper- 
imental data. We made sure that our numerical results 
were sufficiently accurate and grid independent. For 
all calculations a laminar starting profile was applied. 
As a reference test, we took the set of model constants 
listed in Table 3. In each test we varied only one 
constant. The sensitivity results were obtained for 
RSM calculations, but qualitatively also apply to 
ASM calculations. Only the most important results 
are discussed here. Figure 2 shows the sensitivity of 

Nu,, u,,, and k,,,/u&,. These three quantities are 
characteristic for the prediction of the inner layer, the 
mean velocity and the outer-layer turbulence. It is 
seen that the velocity maximum is almost insensitive 
to changes in model constants, whereas Nu, and k,,, 
are moderately sensitive to changes in most model 
constants. 

The most influential RSM constants are C,, Cls, 
C,, and c,. Of slightly less importance are Clowr Czw 
and C,Y, whereas C,, and C,, mainly affect I+, tJ’= and 
~‘0’. The constants CP,, Cp2, CD, and GLaappea&g 
in the se equation have a strong effect on O’* and u’B’, 
but have less influence on the main turbulence 
structure. The remaining model constants are not very 
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important for the overall flow, and they control one 
or two specific quantities. 

The modeling of the pressure-strain correlation and 
the pressure-temperature gradient correlation is 
essential in Reynolds-stress modeling. Since it is 
expected that in high turbulence levels the turbulent 
parts of these correlations will be dominant, it is not 
surprising that C, and CIB are found to be important. 
The fact that C,, and c, are also important is an 
indication of the significance of the wall-correction 
terms involving the fw function. 

The model constants appearing in the Q, equation 
dominate the behavior of temperature fluctuations. 
C,, and CD, are more important than CP2 and CD*, 
indicating that the production and destruction of tem- 
perature fluctuations is mainly determined by the ther- 
mal quantities Pe and .Q. Although further research is 
needed to tune these model constants more accurately, 
the set of constants given by Nagano and Kim [37] 
proved to be satisfactory for our calculations. 

5.3. Comparison with experiments 
5.3.1. Heat transfer and mean-flow predictions. Con- 

sidering the various ranges of model constants 
reported in the literature, we see 1.5 < C, < 3.0 and 
3.0 < CIB < 5.0, whereas C2 and Cz8 vary con- 
siderably as well. Within these ranges, local heat- 
transfer results vary strongly (450 < NM, < 900 at 
Gr, = lo”), but the velocity maximum is almost 
unchanged. Thus it is possible to tune the set of con- 
stants such that good agreement between numerical 
predictions and experiments can be obtained, without 
exceeding the range of literature values. Therefore, we 
chose Cl0 = 3.75 and Clew = 0.75, to improve wall- 
heat transfer predictions for both ASM and RSM 
calculations. From the sensitivity analysis we decided 
to use our initial set listed in Table 3, with which 
good mean-flow results were obtained. It is stressed, 
however, that we did not adapt our set of constants 
to improve results on turbulence quantities. Before 
turning to the detailed turbulence structure, it is 
important to certify that our ASM and RSM cal- 
culations agree well with experimental mean-flow 
data. 

In Figs. 3(a)-(c) the transition from laminar to tur- 
bulent flow can be clearly distinguished. In Fig. 3(a) 
the wall-heat transfer Nu, is compared with the exper- 
imental data of Tsuji and Nagano [9], who found a 
Gr ‘I3 dependence. Taking into account experimental 
inaxccuracies, we see that KEM, ASM and RSM pre- 
dictions all agree well with the experimental data. 
Figures 3(b) and (c) show two other important mean- 
flow parameters : u,,,/ub and v~,,,,/(xu,,,). These 
figures illustrate that at Gr, = IO” the numerical 
solution has approached its asymptotic turbulent 
branch. It is seen that the maximum velocity pre- 
dictions are in good agreement with the measurements 
of Tsuji and Nagano. The turbulent viscosity was 
calculated as C,,F,k’IE. 

Mean-velocity and mean-temperature profiles are 
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FIG. 2. Sensitivity analysis for several flow quantities. (a) 
Wall-heat transfer. (b) Velocity maximum. (c) Turbulent 
kinetic energy maximum. Plotted from left to right are C, , 
Cz. C,, C,o, C20, Cj”, c,,, C& CWW, c,, c,, c,, c,, c&l, CL”, 

C,,, C,,. CD, and CD,. 

depicted in Fig. 4, showing excellent agreement with 

experiments for all three models. In the outer part 
of the thermal boundary layer some differences are 
observed, which are probably due to a small tem- 
perature stratification in the experimental con- 
figuration. Hence, we conclude that our ASM and 
RSM are sufficiently accurate for mean-flow com- 
putations. 

53.2. Turbulence quantities. Here, we will discuss 
turbulence characteristics at Gr, = 10’ ‘, where exper- 
imental data are depicted as symbols and numerical 
data by (dashed) lines. For the data of Tsuji and 
Nagano [7-91 we used circles (0); for the data of 
Miyamoto et al. [6] we used triangles (A). 

In Fig. 5, the calculated normal stresses are com- 
pared with the isotropic normal stress jk derived from 
the KEM and RSM results. The ASM results (not 
plotted) exhibit approximately the same behavior as 
the RSM results. The KEM and RSM produce about 
the same k-profile, but the turbulence structure is 
highly anisotropic, in agreement with experiments. 
In accordance with theory and experiments, we find 
v’~ < w” < u12 throughout the boundary layer, which 

- --KIN 
. Tsuji & Nagano 

(b) 

“. lo** 

lo++ 
ld IO’O 

Gr, IO” 

(cl 

FIG. 3. Transition from laminar to turbulent flow. (a) Wall- 
heat transfer. (b) Velocity maximum. (c) Turbulent viscosity 

maximum. 

is a markedly better result than that of To and 
Humphrey [5]. 

The normal stresses ;;” and v” are investigated 
further in Figs. 6(a) and (b). Since we enforced con- 
sistency with the computed turbulent kinetic energy 
by scaling the normal stresses such that their sum 
equals 2k, the observed differences between ASM and 
RSM predictions are not very large. The calculated 
stress levels agree well with experiments. In the inner 
layer the data of Tsuji and Nagano for pare followed 
better than those of Miyamoto et al. Possibly, this is 
a consequence of the wall-correction function Dz2 
used in the r? equation. Taking the coefficient 8 
instead of 2 in Dz2 will give a lower 7 level in the 
inner layer, but consistency with the k equation will 
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FIG. 4. Calculated mean velocity (a) and mean temperature 

profile (b) compared with experiments. 
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FIG. 5. R.m.s. velocity fluctuations from RSM compared 
with isotropic velocity fluctuations derived from KEM and 

RSM. 

no longer be exactly satisfied. Moreover, it is observed 
that in the outer layer U” is slightly overpredicted and 
v” is underpredicted. Increasing C, will give improve- 
ments on this point, but it will also affect other mean- 
flow and turbulence quantities. A second possibility 
is to use the Quasi-Isotropic Model of Launder et al. 
[15], which gives a somewhat better description of 
anisotropic turbulence. Our sensitivity analysis 
showed that v& is mainly sensitive to changes in 
C,, C,, and c,, indicating that the wall model is of 
importance when predicting normal-stress levels even 
in the outer layer. 

-RSM 

.. ASM 
0.3.- 

. Gr. = 8.44 x 1O’O 

t/;;l _ . Gr*=1.26x10” 
%UX 

0.2 -- 

0. I -- 

IO-’ IO0 
Y/Z 

(b) 

FIG. 6. Computed streamwise normal stress (a) and lateral 
normal stress (b) compared with experimental data. 

0.03 - I 
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“.. ASM 
0.02.- - - KEM 

m . Gr. = 8.99 x 1O’O 
- 
cz 

O.Ol-- 

FIG. 7. Calculated Reynolds-shear stress compared with 
shear stress derived from KEM and experimental data. 

In Fig. 7 the shear stress u’v’ is plotted, where we 

also included KEM results by taking u’v’ = 

- v,d U/ay. The RSM predictions exhibit good overall 
agreement with experiments. In the outer layer the 
KEM gives a too high u’v’ ; in the inner layer ASM 
results differ somewhat from measurements. All three 
models yield U’V’ < 0 in the inner layer. For the KEM 
no qualitative improvements seem possible, but ASM 
and RSM results may benefit from a different wall 
model for the surface term in aij. The wall model 
of Launder et al. [15] might provide an interesting 
alternative. 
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FIG. 8. Computed strearnwise (a) and lateral (b) turbulent 
heat flux compared with measurements. 

In Fig. 8 the streamwise and lateral turbulent heat 
fluxes ~‘0’ and ~‘0’ are investigated for KEM, ASM 

and RSM, clearly showing the superiority of RSM 
predictions. The predicted u/f?‘-profile is only in quali- 
tative agreement with experiments, but RSM results 
are better than ASM results. The position of u’0& is 
shifted too far to the outer edge, and in the inner layer 
~‘0’ < 0 is found in contradiction with experiments. 
In general the profiles for ~‘0’ and u’u’ show some 
similarity. A better inner layer prediction of u’t” might 

therefore also improve ~‘0’ results. Furthermore, the 
use of a different wall model for QiH seems to be 
required. The employed wall model (20) only affects 
the u’%’ equation, but it seems realistic that ~‘0’ is 
influenced by wall effects too. The wall model of Laun- 
der and Samaraweera [38] could serve as a better 
alternative here. The lateral turbulent heat flux ~‘0’ is 
predicted very well by the RSM. ASM and KEM 
agree well qualitatively, but give a too high maximum 
value. 

The temperature fluctuations 8’* are shown in Fig. 
9. The RSM data agree well with experiments, 
especially in the inner layer. In the outer layer e/2 is 
overpredicted by both the ASM and the RSM. This 
might be due to the experimental temperature profiles, 
which were obtained in a slightly stratified medium. 
Also, improvements can be expected from a better 
model for the .st) equation. For the timescale ratio R 
we used R = 0.35 in the ASM, in close agreement 
with numerical data of Nagano and Kim [37] for the 
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FK. 9. Calculated temperature fluctuations compared with 
experiments. 

forced-convection boundary layer. RSM calculations 
showed, however, that R is not a constant over the 
flow. In the inner layer R reaches a maximum of about 
0.7, but in the outer layer R remains virtually constant 

with R x 0.3. These results largely depend on the wall- 
modification functions in the k-.z equations (affecting 

z,) and the @‘--Ed equations (affecting z,), especially 
in the near-wall region. 

The theoretical near-wall y-dependence of the 
turbulence quantities, as derived with Taylor-series 
expansions, could be reproduced very well. We 
checked that this was a result of the inclusion of the 
correction terms Dij, DIB and DO which account for 
anisotropic viscous dissipation. The shape of the fw- 
function is related to the near-wall behavior. In forced 

convection this function decreases from unity to zero 
as y increases. Here, we found much higher values, 
with fw z 3 in the inner layer. In the outer layer fw is 
smaller but remains larger than 0.05. Although this is 
not the expected behavior, the &-function yields good 
predictions of the turbulence structure. 

5.3.3. Eddy-viscosity concept. The eddy-viscosity 
concept is used in many lower-order closure models, 
assuming that turbulent transport of a quantity C#J is 
related to its mean-flow gradient : 

u;f)’ = _ 5 E ( > u,$ axi . 

Our ASM and RSM calculations allow a check on the 
validity of this assumption in the natural-convection 
boundary layer. 

The assumed isotropic turbulence structure in the 
eddy-viscosity concept is not reproduced by exper- 
iments and RSM calculations. This is illustrated by 
Figs. 5 and 6. In the outer layer, u’v’ and ~‘0’ are 
approximated reasonably well by the eddy-viscosity 
concept. In Fig. 10 we have depicted the eddy-viscosity 
for momentum (- u’v’/(aU/~?y)) and temperature 
(- v’f?‘/(a@/ay)), as derived from ASM and RSM 
results. They are compared with KEM results and 
data of Tsuji and Nagano. At the velocity maximum 
the eddy-viscosity for momentum shows a singularity, 
which is reproduced correctly by the ASM and the 
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FIG. 10. Eddy-viscosity for velocity (a) and temperature (b) 
derived from ASM and RSM results, compared with KEM 

and experiments of Tsuji and Nagano. 

RSM. The momentum-eddy-viscosity predicted by 
the RSM falls some 40% lower than KEM and ASM 
results, and agrees with the experimental data. The 
same observation holds for the temperature-eddy-vis- 
cosity. The ratio of these two eddy-viscosities is the 
turbulent Prandtl number oO. From Fig. 11 we see 
that oB exhibits the same singularity as v,, which is 
reproduced by the ASM and the RSM. In the inner 
layer the ASM and RSM results suggest og = 0.75, 
but Tsuji and Nagano found u’u’ w 0 yielding uB z 0. 
In the outer layer the experiments and numerical 
results agree very well. In general, the assumption 

-RSM 
3. .- ASM 

0s -- KEM 

FIG. 11. Turbulent Prandtl number derived from ASM and 
RSM results, compared with KEM assumption and measure- 

ments of Tsuji and Nagano. 

- 4inFlSM 
.. SinASM 

-- fiinKEM 

FIG. 12. Buoyant production Gk of turbulent kinetic energy 
in RSM, compared with shearing production Pk in RSM, 

ASM and KEM. 

eB = 0.9 in the KEM seems reasonable, especially in 
the outer layer where turbulent diffusion is most 
prominent. In the inner layer, including the velocity 
maximum, u,, is certainly not a constant, but this does 
not affect mean-flow predictions very much. 

Another important assumption of the eddy-vis- 
cosity concept is that turbulent transport occurs only 
in the direction of the mean gradient. Experimental 
and numerical data clearly reveal that u’t7’ and a’6 
are of the same order of magnitude, although 
a/ax << ajay. Hence, the KEM predicts a too low k- 
level, since ~‘0’ appears in the G,-term. This is shown 
in Fig. 12. All three models give nearly the same Pk- 
term. In the outer layer, the G,-term attains values of 
about 30% of the P,-term, which is not negligible. 

6. CONCLUSIONS 

The natural-convection boundary layer for air has 
been studied numerically with an RSM and an ASM. 
A suitable model was chosen from the literature. Sen- 
sitivity tests on all RSM constants show that C, , C,@ 
and wall constants Clw, c, are the most important 
parameters for the overall mean-flow and turbulence 
predictions. The other model constants have a much 
smaller effect on the mean flow or only control specific 
turbulence quantities. Wall-heat transfer predictions 
are sensitive to changes in most model constants, but 
urnax is hardly affected by variation of constants. The 
set recommended by refs. [5, 17, 371 was taken, but 
with CIH = 3.75, C,u, = 0.75 and C,V = 0.20. The 
selected set of constants was checked to give good 
mean-flow results. 

Additional near-wall correction functions were 
included to account for the anisotropic dissipation 
rate close to the wall, thus establishing a correct near- 
wall behavior of turbulence quantities. The predicted 
turbulence quantities were compared with exper- 
iments. The ASM results agree qualitatively well with 
experiments of Tsuji and Nagano [7-91 and Miyamoto 
et al. [6], but RSM computations are superior to the 
ASM. Further, the calculations show that the local- 
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equilibrium assumption is not valid in the natural- 

convection boundary layer. 

The inner layer structure is notably different from 

the outer layer. This is mainly due to the velocity 
gradient, which has opposite signs in the inner and 

outer layer. The data of Tsuji and Nagano suggest 
U’l’l z 0 and ~‘6” = 0. Our numerical calculations, 
however, give u/c’ < 0 and ~‘0’ < 0. Better near-wall 
models are needed to improve predictions, but 
additional experimental data are useful as well, since 

the inner layer is very thin and accurate measurements 
are difficult. 

The eddy-viscosity concept, employed in the KEM, 
does not give a realistic description of the turbulence 
structure. In particular, the turbulence is strongly 
anisotropic, in contrast with KEM assumptions. 

Moreover, turbulent transport normal to the mean 
gradient is underpredicted. As a result, a too low GA- 
term is predicted by the KEM. Turbulent diffusion, 
described with an eddy-viscosity, is predicted correctly 

by the RSM, but the KEM gives only qualitative 
agreement with experiments. Furthermore, the tur- 
bulent Prandtl number de, is certainly not a constant 

over the whole flow. Fortunately, mean-flow pre- 
dictions do not suffer much from these shortcomings. 
Hence, the low-Reynolds-number KEM of Jones and 
Launder [2], Chien [3] or Lam and Bremhorst [4] will 
be suitable for most mean-flow predictions close to a 
solid wall. A fully differential RSM, however. is 

needed to predict correctly the detailed turbulence 
structure in the natural-convection boundary layer. 
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LE MODELE DE TENSION DE REYNOLDS DE LA TURBULENCE APPLIQUE A LA 
COUCHE-LIMITE DE CONVECTION NATURELLE LE LONG D’UNE PLAQUE VERTICALE 

R&ntt&-On etudie numtriquement la couche limite turbulente de convection naturelle d’air le long d’une 
plaque verticale avec un modele algebrique (ASM) et un autre differentiel de tension de Reynolds (RSM). 
On stlectionne un jeu de constantes de facon a p&dire le transfert thermique pa&al et la structure de 
l’ecoulement moyen en bon accord avec I’experience. Des tests de sensibilite sur les constantes RSM 
montrent quelles constantes dominent la prediction de I’ecoulement et quelles autres at&tent seulement 
les grandeurs de la turbulence. Des modifications de paroi sont utilisees pour amehorer les predictions de 
la turbulence proche de la paroi. Des calculs RSM des grandeurs de turbulence s’accordent bien avec les 
donnees experimentales disponibles. Les resultats ASM sont moins bons mais nbanmoins en accord 
qualitatif avec les experiences. Dans les couches limites de convection naturelle, l’hypothese d’bquilibre 
local n’a qu’une apphcabilite limit&e. En outre on teste le concept de viscosite turbulente utilise dans le 
modele k-s. Celui-ci donne de bons resultats pour l’ecoulement moyen mais pour une bonne prediction de 

la structure detaillee de la turbulence on a besoin du RSM. 

ANWENDUNG DES REYNOLDS’SCHEN SPANNUNGSMODELLS FUR TURBULENTE 
STRC)MUNGEN AUF DIE GRENZSCHICHT EINER STRt)MUNG BE1 
NATURLICHER KONVEKTION AN EINER SENKRECHTEN PLATTE 

Zusammenfassung-Die turbulente Grenzschicht bei natiirlicher Konvektion in Luft entlang einer 
senkrechten beheizten Platte wird numerisch mit einem algebraischen (ASM) und einem differentiellen 
Reynolds’schen Spannungsmodell (RSM) untersucht. Aus der Literatur wird ein Satz von Modell- 
parametem so ausgewahlt, daB der Warmetibergang an der Wand und die Struktur der Hauptstromung 
gut mit den Versuchsergebnissen iibereinstimmen. Sensitivitltsuntersuchungen mit den Konstanten des 
RSM-Modells zeigen, welche Konstanten die Hauptstrijmung und welche nur die Turbulenzeigenschaften 
beeinflussen. Die Ergebnisse des RSM-Modells stimmen beziiglich der TurbulenzgriiBen gut mit den 
vorhandenen Versuchsergebnissen i&rein. Die Ergebnisse des ASM-Modells sind schlechter, aber sie 
stimmen immer noch qualitativ mit den Versuchsergebnissen i&rein. Dies zeigt, daB die Annahme lokaken 
Gleichgewichts in der Grenzschicht von natiirlichen Konvektionsstriimungen nur begrenzt giihig ist. 
Weiterhin wird der Ansatz fur die turbulente Viskositlt untersucht, der im k-s-Model1 (KEM) ver- 
wendet wird. Das KEM liefert gute Ergebnisse fiir die Hauptstrijmung, fur eine gute Beschreibung der 

Turbulenzvorgiinge wird jedoch das RSM-Model1 beniitigt. 
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MCIIOJIb3OBAHHE MOfiEJIM TYPBYJIEHTHOCTII, OCHOBAHHOfi HA HAIIPIIXEHHH 
PEfiHOJIbflCA, AJI% OiIHCAHH5i E~E~BEHHOKOHBEKT~BHOrO ~O~AH~~HOrO 

CJIOR BAOJIb HArPEBAEMO~ B~~~KA~bHO~ ~~A~~HbI 

.hmo~aurw--c HCrIonb3oBaHHeM aJre6patisecKoii (ASM) il &vi+$epea&&ianbHoii Monenn peiiaonbz&onc- 
RO~O Kanp%iceHHn (RSM) wicneHH0 Hccnenyexn TypEiyneHnrblii ecrecTeeHHoI(oHBe?xBBHblg norpatnw 
HbIii CJIOii BO3AyXa y HarpeTOii BepTSiKiWTbIiOii MWTHHbI. Pe3ynbTaTbI PiWieTOB TeIInOIIe~HOCii OT 

creHKu~~y~~ypblcpen~eroTe~e~~n,n~nonHeH~arxc~cnonb3oBa~ne~n3nT~xH3nH~e~T~bxnapa- 

MeTpOB MO&3,H, OWHb XOPOWO COZ-BW,‘IOTC!J C 3KCIIepHMeHTaJIbHblMH J‘aHHblMH. npOBe,,Ka TOSHOCTII 

~~~~~b~o~ hfonem ~~Honbnco~Koro Iianpnncemis noKa3bmaeT, KaKHe H3 napabmpoe 

KBnKKITCKL[OMHHHp~~MA~~HOR~~~eHK~~~He~OT~~eHHK~KaRHeOKa3~B~T~~~eTOnbKO 

Ha BenWYUHbI TyP6yneHTHoCTU. j&l%? iIOBbIIUeHEiX TOSHOCTH paC'IeTOB TrpciyneHTHOCTH i#6nHsu CTeHKA 
liCIIOJIb3ylOTCII ee pa3JIHqHbIe BapUaHTbt. PaCYeTHbIe p3ynbTaThI .JJJIK BeJlHYHH Typ6yJleHTHOCTB, IlOlly- 
vetwbte c nordouwo hfonem RSM, xopowo cornacymcn c miemmh4Hc~ 3KCIIepHMeHTaJIbHbIMH 

&WHbIhUi. h3yJIbTaTbIMOnenH ASM MeHeeTO'IHbI,XOTII H KaWCTBeHHOCOI‘nWyIOTCX C3KCIIepHMeHTa- 

nbHblMH mUiHMMH. OTCIOna CZeRyeT, 4TO B CJIyYae eCTWTBeHHOKOHBeKTHBHbIX tIOr&XiHHWbLX CJIOeB 

npHhfeHHrdocTb n~~ono~eH~~ 0 noKanbHoM paBHo~RHorpa~~eHa.TaK~e~~~pn~c~ npaeohiep- 

H~bHC~O~3O~H~n~OH~H~Ty~y~eHTHO~ BR3KOCTH BMO~eR~~-&(KEM~. Haee ~HOBenO~~e~ 
YAO~eTBOp~TenbHbIe pe3ynbTaTM IlO CpQXHeMy TeYf%lKfO, HO LUIS 6onee TO’iHOrO O~LWi~lfHK IleT&%- 

HOk CTpyKTypU Typ6ySIeHTHOCTHHeo6xomiMoUCnOnb3OBaTbMOAenbRs?Vf. 


